Hip Imaging in Athletes: Sports Imaging Series

Hip or groin pain in athletes is common and clinical presentation is often nonspecific. Imaging is a very important diagnostic step in the work-up of athletes with hip pain. This review article provides an overview on hip biomechanics and discusses strategies for hip imaging modalities such as radiography, ultrasonography, computed tomography, and magnetic resonance (MR) imaging (MR arthrography and traction MR arthrography). The authors explain current concepts of femoroacetabular impingement and the problem of high prevalence of cam- and pincer-type morphology in asymptomatic persons. With the main focus on MR imaging, the authors present abnormalities of the hip joint and the surrounding soft tissues that can occur in athletes: intraarticular and extraarticular hip impingement syndromes, labral and cartilage disease, microinstability of the hip, myotendinous injuries, and athletic pubalgia.

Learning Objectives:
After reading the article and taking the test, the reader will be able to:
- Describe biomechanical implications of torsional malalignment and other atypical forms of hip impingement
- Describe the most common MR imaging findings in femoroacetabular impingement and identify anatomic variants
- Describe imaging characteristics of a Morel-Lavallée lesion and identify the anatomic compartment where this lesion typically occurs
- Identify common stress fractures around the hip joint in athletes and discuss potential complications
- Describe features of myotendinous injuries around the hip
- Describe the anatomic relationship of the sacrotuberous ligament and the origin of the hamstring tendons
- Describe the anatomic structures involved in an athletic pubalgia

Accreditation and Designation Statement
The RSNA is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The RSNA designates this journal-based SA-CME activity for a maximum of 1.0 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Disclosure Statement
The ACCME requires that the RSNA, as an accredited provider of CME, obtain signed disclosure statements from the authors, editors, and reviewers for this activity. For this journal-based CME activity, author disclosures are listed at the end of this article.

From the Department of Radiology, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland; and Faculty of Medicine, University of Zurich, Zurich, Switzerland. Received June 18, 2015; revision requested August 5; revision received September 8; accepted September 25; final version accepted October 20. Address correspondence to C.A.A. (e-mail: christoph.agten@balgrist.ch).

© RSNA, 2016
Hip or groin pain is common and is experienced by up to 23% of athletes during a 1-year period (1). Sports injuries depend on age and sex and the type of sport (eg, ballet, field-based sports, martial arts, running) (2). In children and adolescents, 10%–24% of sports-related injuries affect the hip (2,3) as opposed to about 5%–6% in adults (4). Table 1 provides frequencies of sports-related hip/groin injuries in professional athletes. In professional soccer players, overuse hip injuries are more common (73%) compared with soccer players, overuse hip injuries are more common (73%) compared with acute injuries to the hip (27%) (5). The most common hip/groin injuries in soccer players are adductor injuries (64%), followed by hip flexor/iliopsoas injury (8%) (5). In National Football League athletes, common hip/groin injuries are muscle strains (59%) and contusions from direct impact (33%) (6). In particular, hip injuries in athletes are less frequent (6.2% in soccer and 5% in American football) (5,6). Time to full return to sport (days lost) is often one of the first questions asked by injured athletes. Mean number of days lost before return to sport in hip/groin injuries largely varies by injury type (Table 2).

Biomechanics

Biomechanical knowledge of the hip joint is important to understanding hip disease in athletes. Depending on the type of sports, fast acceleration and rotations can occur within the hip joint.

Bone

The hip joint is a ball-in-socket joint. Because of the high congruency of the femoral head and the acetabulum, most of the motion within the joint is rotational (7). Range of motion is limited by osseous structures. Insufficient osseous stability in the hip joint, as in a dysplastic hip, can lead to altered force transmission and damage to the joint (8). Abnormal bone contact as in patients with FAI or slipped capital femoral epiphysitis is a cause for damage to the hip joint. Abnormal femoral torsion (angle between femoral condyles and femoral neck axis) is another factor for abnormal bone contact. A reduced femoral antetorsion can limit internal rotation with early bone contact, while an increased antetorsion limits external rotation (9). Patients with coxa valga combined with increased femoral antetorsion have reduced range of motion for extension, adduction, and external rotation and are reported to have a higher prevalence of extraarticular posterior impingement (10).

Cartilage

The hyaline cartilage covering the articular surfaces is important for force transmission in the joint (11). Direct impact to the greater trochanter leads to force transmission into the joint, which can result in focal cartilage defects on the femoral and acetabular side of the joint (12). Cartilage delamination at the acetabulum can occur in patients with a cam-type FAI owing to shear forces from the aspheric femoral head-neck junction (13).

Labrum

The labrum enlarges the acetabular surface by 22% (8). The labrum works as a seal to keep the joint fluid intraarticular and enhances joint lubrication, preventing cartilage wear (14). The labrum can be damaged by early contact between femur and labrum due to FAI (15) or during extreme hip motion (16). The labrum also assists in hip stability. Labral tears can lead to reduced stability in the joint because of loss of the sealing effect (16). Instability in the hip joint leads to translational motion in the joint and therefore shear forces in the cartilage and labrum (8).

Ligaments

The hip joint is further stabilized by multiple ligaments enhancing the joint capsule: the iliofemoral ligament (which is the strongest), the ischiofemoral ligament, the pubofemoral ligament, and the femoral arcuate ligament (also known as zona orbicularis) (17,18). The ligamentum teres, also known as the ligamentum capitis femoris, has gained more attention in recent years. Its main function is to limit hip rotation (19).

Muscles

Muscles around the hip also act as dynamic hip stabilizers. The iliocapsularis is one of the muscles that has been identified as stabilizer of the hip joint originating from the anteromedial joint capsule and inserting distally to the lesser trochanter (20). Marked hypertrophy and less fatty infiltration of the iliocapsularis muscle on magnetic resonance (MR) images is found in patients with dysplastic hip compared with patients with acetabular overcoverage (21).

Imaging Techniques

Radiography

After history and clinical examination, standard radiography is the first imaging modality to assess a painful hip. Standard radiographs are widely available and inexpensive. They provide a fast overview on the bone anatomy and many other abnormalities such as joint degeneration and fractures. The projections at our institution consist of a non-weight-bearing anteroposterior view of the pelvis and a cross-table lateral view.
of the affected hip. Other dedicated radiographic projections for hip assessment exist (eg, 45° Dunn view, 90° Dunn view, frog leg lateral view). The Dunn view (45°) projection especially provides good results regarding cam-type deformity using the alpha angle as criterion (22). However, cam deformity cannot definitely be excluded, even with dedicated radiographic projections. A standardized and reproducible radiographic technique for the anteroposterior view of the pelvis is required. Subtle rotation and tilting of the pelvis can result in under- or overestimation of acetabular version (23). To avoid rotational malposition of the pelvis, the center of the sacrum needs to be vertically aligned with the symphysis. To avoid excessive tilting of the pelvis, the distance between the sacrococcygeal joint and the pubic symphysis should be around 32 mm for men and 47 mm for women in a standardized anteroposterior view of the pelvis (24). Software has been developed to correct for rotation and tilt by three-dimensional (3D) analysis of the two-dimensional (2D) images of the pelvis (25). Biplanar radiography with secondary 3D analysis can be used to assess femoral torsion (26) and calculate acetabular coverage (27).

Ultrasonography

Ultrasonography (US) is a valuable tool in the work-up of an athlete with hip pain (28). A major advantage of US is the possibility of dynamic evaluation of the hip, for example patients with snapping hip syndromes (29). Other advantages are accessibility on site at sporting events and relatively low cost. Commonly assessed structures are the iliopsoas tendon, iliopsoas bursa, and joint effusion. Evaluation of the acetabular labrum with US has been described (30). However, only the anterior part of the labrum is consistently seen, and other techniques such as MR arthrography are superior for detection of labral tears (31). Cam-type deformity anteroposteriorly can be detected with US, but with a low specificity (32). US is widely used for imaging-guided diagnostic or therapeutic injections around the hip joint. Because no radiation is used in US-guided injections, it is a valuable alternative to fluoroscopy-guided injections, especially in young athletes. Patients’ satisfaction was reported to be higher with US-guidance compared with fluoroscopy for therapeutic hip injections (33).

Computed Tomography

Computed tomography (CT) is ideal for fracture analysis in blunt force trauma. However, CT has only limited value in evaluation of sports injuries in the hip. Three-dimensional CT can be used to assess bone morphology with respect to FAI (34). Dedicated software has been developed to assess virtual hip motion with 3D models from CT scans and visualize site of bone impingement (35). Labral tears and cartilage defects can also be detected at CT arthrography, but when the diagnostic performance is compared with that of MR arthrography, contradictory results have been reported (36,37). But as athletes with FAI are often young, CT with its ionizing radiation should be reserved for exceptional situations, such as patients with MR imaging contraindications.

MR Imaging

MR imaging is useful to assess intra- and extraarticular disease. Because hip/groin pain in athletes can have multiple origins, a dedicated hip imaging protocol is needed. Imaging is performed in a patient in the supine position with an empty bladder. To get an overview, a fluid-sensitive, fat-suppressed sequence in the coronal and/or transverse plane with a large field of view including the pubic symphysis is recommended to detect bone marrow and soft-tissue edema. Then a dedicated hip examination with a small field of view should be performed with a body matrix and surface coil. The imaged hip should be centered in the magnetic field.

A coronal T1-weighted turbo spin-echo sequence is helpful to assess bone marrow infiltration and fractures of the acetabulum or proximal femur. Fluid-sensitive sequences in the coronal plane help to detect bone marrow edema and nicely demonstrate anatomy of the ligamentum teres and the peritrochanteric region. Because of the spherical anatomy and the orientation of the acetabulum, standard imaging planes are susceptible to partial volume artifacts. Radial imaging improves the assessment of the complex 3D anatomy in hip imaging (38,39) and is part of the routine hip MR imaging and MR arthrography protocol at our institution (Table 3). Orientation of radial reformatted images is perpendicular to the transverse/short axis of the

Table 1

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Frequency of Hip/Groin Injuries in Athletes</th>
<th>Most Common Injury Type in the Hip/Groin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport</td>
<td>Frequency of Injuries Affecting the Hip/Groin</td>
<td>Adductor/hamstring injuries</td>
</tr>
<tr>
<td>Soccer (5,160)</td>
<td>12%–16%</td>
<td></td>
</tr>
<tr>
<td>American football (6)</td>
<td>3.1%</td>
<td>Hip flexor strains</td>
</tr>
<tr>
<td>Basketball (174)</td>
<td>6.2%</td>
<td>Hamstring strains</td>
</tr>
<tr>
<td>Ice hockey (175,176)</td>
<td>4%–13.1%</td>
<td>Muscle-tendon strains (not specified)</td>
</tr>
</tbody>
</table>

Note.—Percentage of hip/groin injuries in relation to all injuries.

Table 2

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Days Lost before Return to Sports per Hip/Groin Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Type</td>
<td>Mean No. of Days Lost</td>
</tr>
<tr>
<td>Contusions</td>
<td>5.3 (1–30)</td>
</tr>
<tr>
<td>Muscle strains</td>
<td>8.9 (1–82)</td>
</tr>
<tr>
<td>Adductor injury</td>
<td>14 (1–197)</td>
</tr>
<tr>
<td>Labral tear</td>
<td>56–64 (3–127)</td>
</tr>
<tr>
<td>FAI</td>
<td>64 (NA)</td>
</tr>
<tr>
<td>Fracture</td>
<td>100.6 (65–184)</td>
</tr>
</tbody>
</table>

Note.—Numbers are mean days lost before full return to sports for American football (National Football League 1997–2006) and soccer (Union of European Football Associations 2001–2008) (5,6), with ranges in parentheses. FAI = femoroacetabular impingement, NA = not available.
femoral neck and neck-head junction, allowing assessment of the femoral neck-head junction at all positions, therefore improving detection of abnormalities such as cam-type deformity (39). Radial images can be acquired either directly planned on localizers (38,40) or secondary based on reformating from a 3D isovoxel sequence (41). In one study, 3D imaging of the hip did not improve the diagnostic performance of cartilage lesions, but at least improved cartilage lesion conspicuity (42). In another study comparing 3D and 2D imaging, a lower specificity for detection of cartilage lesions was found for 3D, however accuracy for grading of cartilage lesions was higher using 3D sequences (43).

Role of MR arthrography.—Direct MR arthrography is superior to standard MR imaging in hip imaging for detection of labral and cartilage lesions (44). MR arthrography showed higher sensitivity compared with conventional MR imaging (69%-81% vs 50%) for detection of labral tears in the anterosuperior quadrant and a higher interreader agreement (44). MR arthrography also improved detection of acetabular cartilage defects, while no advantage was found for cartilage defects on the femoral head in comparison with conventional MR imaging (44).

For arthrography, the target zone for the needle is the center of the femoral neck or the superolateral quadrant of the femoral head (45). In patients who have undergone previous hip arthroscopy, the target zone is the superolateral femoral head because of possible adhesions between the joint capsule and the femoral neck, especially in patients who underwent osteochondroplasty of the femur (Fig 1). Indirect MR arthrography has been reported as an alternative tool with a good detection rate for labral tears and cartilage disease (46).

It has been reported that 3-T standard MR imaging of the hip has the potential to replace 1.5-T MR arthrography because of the higher signal-to-noise ratio with 3-T imaging (47,48). However, in our opinion, dedicated coils and small field-of-view imaging are at least as important as field strength, resulting in very good image quality using new generation 1.5-T MR machines. Also, 3-T MR arthrography is of superior diagnostic quality compared with conventional 3-T MR imaging in the hip (49). Another advantage of MR arthrography over conventional MR imaging, regardless of field strength, is the possibility to distract the joint when continuous leg traction is applied.

Traction MR arthrography.—Distinction of the femoral and acetabular hyaline cartilage layer can be difficult at standard MR arthrography because no contrast is located between the layers. This limits the evaluation of the cartilage in the central hip compartment. MR imaging with continuous leg traction was first proposed 20 years ago (50). The combination of direct MR arthrography and leg traction was introduced in 2008 (51). Traction is usually achieved by using orthopedic traction devices. The weight used for traction varies: The mentioned study from 2008 used 6 kg (51). In one study using 8–10 kg for traction and an injected volume of 10–14 mL, joint distraction was achieved in only 8% (61 of 743) (52). In a recent study with direct MR arthrography using 15–23 kg of traction and an injected volume of 18–27 mL, a consistent separation of the acetabular and femoral cartilage layer could be achieved (53).

Cartilage delamination is especially difficult to see without traction, because the femoral head realigns the delaminated acetabular cartilage layer against the subchondral bone of the acetabulum. With adequate distraction, contrast agent can undermine the cartilage flap and therefore enhance visualization of cartilage delamination (54) (Fig 2). At our institution, traction MR arthrography is now routinely performed.

Athletic Hip and Groin Injuries

Stress Fractures and Avulsions
Stress fractures result from a mismatch between bone quality and mechanical...
stress to the bone. Stress fractures are usually divided into fatigue fractures (high stress, normal bone quality) or insufficiency fractures (normal stress, weak bone) (55). Stress fractures and fatigue fractures are often used as synonyms. In competitive track and field athletes, 21% of all athletes sustained a stress fracture in a 1-year period, with no difference between male and female athletes (56). However, young female athletes with risk factors called the “female athlete triad” (eating disorders, amenorrhea, and decreased bone density) have a cumulative higher risk for stress fractures with each of these risk factors—up to 20% for a single factor and 30%–50% for combined risk factors (57). Around the hip joint, common sites for stress fractures in athletes are the acetabulum and the femur. For acetalubar stress fractures, two patterns have been described in endurance athletes: fractures in the acetalubar roof and fractures in the anterior column (58). Femoral neck stress fractures are an important injury in runners (59). Medial femoral neck stress fractures result from repetitive compressive forces (compression-type stress fracture) and have a low risk for complications. Lateral femoral neck stress fractures have a higher risk for displacement (tension-type stress fracture) (60). After arthroscopic osteochondroplasty for cam deformity in FAI, insufficiency fractures of the femoral neck occur in about 2% of patients (61).

Radiographs have limited value for the detection of stress fractures and often no changes to the bone can be detected (62). Stress fractures may manifest on radiographs as horizontal bands or periosteal new bone formation only a few weeks after the onset of symptoms. MR imaging is much more sensitive than radiography or bone scintigraphy for the detection of stress fractures (63). Stress fractures on MR images manifest as bone marrow edema on fluid-sensitive images, typically with a hypointense line on T1-weighted, T2-weighted, and intermediate-weighted images (Fig 3). Bone marrow edema without a hypointense line may be referred to as a stress reaction instead of a stress fracture. Eventually a stress fracture develops if the mechanical stress to the bone persists. With healing of the stress fracture, the bone marrow edema disappears.

Avulsion fractures may result from an acute trauma or chronic repetitive stress and are usually seen in adolescents. Around the hip joint tendon avulsion fractures are most common. In adolescent athletes, common sites of avulsion fractures include the ischial tuberosity (hamstring tendons), anterior inferior iliac spine (AIIS) (direct head of the rectus femoris tendon, Fig 4), lesser trochanter (iliopsoas tendon), anterior superior iliac spine (tensor fascia latae and sartorius tendon), symphysis pubis (gracilis tendon), and the iliac crest (external oblique, internal oblique, and transverse abdominal muscles) (64). Avulsion fractures are common in sprinting, kicking, and gymnastics (64).

Bone marrow edema can be seen at the site of the avulsed fragment, but usually to a lesser extent when compared with classic fractures (65). The diagnosis of an avulsion fracture is sometimes difficult and the appearance on MR images and radiographs may even mimic a bone tumor, especially in chronic cases with bone overgrowth.
In cam-type impingement, abnormal bone contact occurs between the femur and the acetabulum, which may lead to early degenerative hip disease. Predisposing bone abnormalities that may lead to FAI are the pincer-type morphology (overcoverage of the acetabulum) and the cam-type morphology (defor- mity of the femoral head-neck junction) (41). A combination of pincer- and cam-type impingement (mixed-type FAI) is frequent and more common in male (62%) than female (32%) subjects (68). The clinical diagnosis is difficult. Impingement tests, such as the hip flexion-adduction-internal rotation test, show overall good sensitivity but lack sufficient specificity (69). The impingement test may even be positive in about 5%-7% of asymptomatic young adults (70).

Pincer-type FAI.—In pincer-type impingement, abnormal bony contact occurs between the acetabulum and the femur owing to a focal or general acetabular overcoverage. Focal acetabular overcoverage can be a result of an acetabular retroversion (71). General acetabular overcoverage is caused by an increased acetabular depth, as in coxa profunda and protrusio acetabuli (41). Acetabular depth can be measured on oblique transverse MR images as the distance between the femoral head center and the line connecting the anterior and posterior acetabular rim (41). On radiographs, three signs can help to detect acetabular retroversion: the crossover sign, the posterior wall sign, and the ischial spine sign (72). However, these signs are prone to intra- and interrater variability (73) and are susceptible to pelvic rotation and tilt on radiographs (74). One method to measure the acetabular version on transverse MR images is at the level of the acetabular roof as the angle between the line connecting the anterior and posterior acetabular rim and a vertical line (sagittal plane) (75). Another radiographic sign for pincer-type morphology is an increased lateral center-edge angle (>40°) (68). An isolated pincer-type impingement, even in female subjects, is an uncommon finding, with mixed-type impingement being more common (68).

Cam-type FAI.—In cam-type impingement, an aspherical portion of the femoral head (the cam deformity) leads to abnormal bone contact and joint damage. Several theories exist as to how a cam deformity develops: Athletes in high-impact sports have a higher risk of developing a cam deformity of the femur (76). Very active participation in sports such as basketball, soccer, or American football before skeletal maturity may alter the development of the femoral physis and can result in a higher prevalence of cam deformity (77,78). Mechanical stimuli in vigorous sport activities can initiate an adaptive response at the femoral growth plate and therefore result in a cam deformity (79). In young soccer athletes, cam deformities gradually developed during skeletal growth over time in a 2-year follow-up (80).

Slipped capital femoral epiphysis alters the head-neck offset and the sphe- ricity of the femoral head and therefore leads to FAI and early joint degeneration (Fig 5) (81). Slipped capital femoral epiphysis has been suggested to be one of the etiologic factors for cam-type impingement (82). Prevalence of a slip-like morphology in primary cam deformity was reported to be around 12%

Figure 3: MR image in a 20-year-old man with hip pain and a clinically suspected labral tear. Coronal intermediate-weighted fat-saturated image (3500/39) of the right hip shows a stress fracture in the anterior column of the acetabulum. There is a vertically oriented hypointense fracture line (arrow) and marked bone marrow edema. (66). In avulsion fractures of the lesser trochanter in adults without a substi- tutional traumatic event, metastatic disease should be suspected (67).

Figure 4: a. MR images in a 29-year-old soccer player with hip trauma 2 weeks previous during play time. (a) Coronal (4000/59) and (b) transverse (5770/61) short tau inversion recovery (STIR) images show an osseous avulsion (white arrow) of the AIIS that is displaced distally. There is little bone marrow edema in the origin of the AIIS (black arrow). Note the feathery muscle edema (muscle strain) at the proximal myotendinous junction (*), extending far distally along the reflecting portion of the rectus femoris tendon (arrowhead).
and differs from the idiopathic cam deformity (83). Two imaging signs are helpful to detect the slip-like morphology: the fovea sign and the tilt angle (83), both seen on radial MR images at the 2 o’clock anterosuperior position. The fovea sign is positive if the femoral neck axis does not cross the fovea capitis femoris. The tilt angle is calculated between the femoral neck axis and the line perpendicular to the connecting line between the two ends of the femoral epiphysis and is positive if the angle is greater than 4° (83). These signs may be more useful in research than in the clinical routine, as therapy signs may be more useful in research

Other factors influencing the cam deformity are intrinsic factors such as sex and genetics (84). The relative risk for a cam deformity is increased 2.8-fold in siblings of patients with a known cam deformity and twofold for pincer deformity (85). Other risk factors for FAI include secondary deformities after Perthes disease (86) or posttraumatic conditions (87). In summary, the exact pathways for the development of cam deformities seem to be multifactorial and for the present time not completely understood.

Quantification of deformity and controversy on the alpha angle.—The alpha angle is the most commonly used method to quantify cam deformity. The alpha angle is defined as the angle between the long axis of the femoral neck through the center of the femoral head (line 1) and a line from the center of the femoral head through the point where the outer contour of the femoral head-neck junction crosses the circle with a radius of the cartilage-covered femoral head (line 2) (88). Classically the alpha angle has been used to quantify cam deformity anteriorly on angled axial MR images (88), and later the same method was used to quantify the cam deformity on radial reformatted MR images on multiple locations, as many cam deformities are present at the anterosuperior position (41). The classic cut-off angle for diagnosing a cam deformity was 55° initially, and it was recently suggested to be raised to 60° (89). The problem with the alpha angle and similar methods for quantifying cam deformity, such as the femoral offset and femoral distance, is the lack in discrimination between symptomatic and asymptomatic patients, limiting their clinical value (89,90).

Relevance of imaging findings.—The classic triad of MR imaging findings in cam-type impingement is made up of anterosuperior labral tears, anterosuperior cartilage defects, and cam-type morphology (eg, abnormal alpha angle) (91). FAI morphology is common in asymptomatic volunteers. Interestingly, the cam deformity is more prevalent in asymptomatic athletes (37%-55%) compared with the general asymptomatic population (23%) (92). This supports the theory that high-level sports activity is a factor for the development of clinically important FAI, at least in a subset of patients. Importantly, the clinical relevance of cam- and pincer-type morphology encountered at imaging should always be correlated with the clinical history and the physical examination. The presence of such deformities may predispose one to FAI. However, FAI is a dynamic process, which can only be diagnosed clinically including dynamic testing and not based on imaging alone.

Extraarticular Hip Impingement
Apart from the classic intraarticular FAI, other (less common) forms of hip impingement have been described (93).

Ischiofemoral impingement.—Ischiofemoral impingement is caused by impingement of soft tissues between the proximal femur and the ischium. MR imaging findings are edema in the quadratus femoris muscle, fatty atrophy of the quadratus femoris muscle, a narrowed ischiofemoral space (between ischium and lesser trochanter), a narrowed quadratus femoris space (between hamstring tendons and lesser trochanter), and, less frequently, involvement of the hamstring tendons (Fig 6) (94). In a recent meta-analysis, a cutoff of 15 mm or less for the ischiofemoral space (sensitivity, 78.7%; specificity, 74.1%) was suggested (95). Pelvic morphology may also contribute to a narrowed ischiofemoral space. The intertuberosus distance estimated by the ischial angle (between the horizontal plane and the ischiopubic ramus on transverse MR images) was reported to be higher in patients with ischiofemoral impingement compared with a control group (96). Ischiofemoral impingement is more common in women and older people (mean age, 50.8 years) (95). In asymptomatic elite gymnasts however, a narrowed ischiofemoral space and edema in the quadratus femoris muscle are frequent findings (up to 62.5%), often bilaterally (97).

Subspine impingement.—Subspine impingement is caused by soft-tissue impingement between the AIIS and the femur head-neck junction during hip flexion (98). Avulsion fractures of the AIIS in adolescent athletes are common and are also called sprinter’s fractures (99). AIIS avulsions are frequent in soccer, tennis, and athletics (64). Healing of the avulsed fragment at a caudally dislocated position may result in an enlargement of the AIIS (Fig 7). The bone protuberance after a healed displaced
avulsion fracture of the AIIS is detectable on radiographs and especially with 3D CT with dynamic simulation (100).

Extreme hip motion.—Sports such as high-level martial arts, gymnastics, and ballet need a high range of motion in the hip. Extreme hip motion in end positions may result in a “pincer-like” impingement even with a normal bony morphology (101). MR imaging of elite female ballet dancers in the splits position showed a subluxation of the femoral head in this extreme position (101). Such incongruence in extreme hip positions may increase mechanical stress to the cartilage and labrum (101). Cartilage and labral damage in elite ballet dancers is more superior compared with nondancers, where it is more anterior (101).

Torsional malalignment.—An abnormal femoral torsion (angle on transverse CT or MR images between the line connecting the most posterior surface of both femoral condyles and the femoral neck long axis) is a factor for an FAI even in the absence of cam-type or pincer-type deformity (9). A reduced femoral torsion limits internal rotation and can lead to an early anterior bone impaction during internal hip rotation. An increased femoral torsion limits external rotation with early contact posteriorly (9). In asymptomatic volunteers...
Labrum

Acetabular labral tears are a frequent source of hip pain in athletes (103). Labral tears can occur in a variety of sports such as football, golf, and tennis (104). Known causes for labral tears are direct trauma, capsular laxity, dysplastic hip, and FAI (105). To describe the localization of labral tears there is a clock-face method, with 3 o’clock meaning anteriorly and 12 o’clock superiorly, regardless of laterality of the hip (106). Most acetabular labral tears (84%) are located anterosuperiorly, and 16% posteroinferiorly, while anteroinferior and posteroinferior tears are rare (44). Isolated anterior labral tears have been reported to be associated with iliopectineal impingement (107). At the anterosuperior position the labrum has biomechanical properties, such as lower compressive elastic modulus and lower tensile modulus compared with the other parts of the labrum, that favor tears at this location (108). Labral tears do not necessarily cause symptoms. A high prevalence (56%) of labral tears in asymptomatic hockey players has been reported (109). Of these players, only 14% developed hip symptoms within a 4-year follow-up period (110). Other investigators have found labral tears in asymptomatic volunteers in 69%–86% of studies (111,112). Therefore, interpretation of labral tears at MR imaging needs a clinical correlation.

Normal Variants

Several labral variants may be misdiagnosed as a labral tear. Sublabral recesses (also called sulci) are found arthroscopically in 18%–22% of patients (113,114). Typically, sublabral recesses are located anteroinferiorly at the 4 o’clock position, while labral tears are typically located anterosuperiorly (2 o’clock position) (114). Another frequent location for sublabral recesses is the posteroinferior location at the insertion of the transverse ligament (115). However, sublabral recesses can be found at all anatomic locations (116). Apart from localization, other criteria may be helpful to distinguish a recess from a labral tear: A recess is located at the base of the labrum, is linear in shape, and has smooth edges, while a tear often has irregular borders and may extend into the labral substance (117). Sublabral recesses do not extend through the full thickness of the labral substance and are not associated with paralabral cysts (Fig 8) (114,117).

At the capsular surface of the labrum, a perilabral recess between the joint capsule and the labrum exists. This perilabral recess is present circumferentially with variable depths, smallest at the superior position (118). It is usually not difficult to distinguish from a labral tear, but fluid or contrast material within the perilabral recess might mimic paralabral cysts.

Imaging Findings

Labral tears most commonly occur at the base of the labrum (detachment) or less frequently within the labrum substance as an intrasubstance tear (117)—most commonly at the anterosuperior position (44). About half of all labral tears are full-thickness tears (114). The torn labrum can show abnormal signal intensity and/or extension of contrast material into the labral substance (114). The presence of osseous abnormalities (cam deformity), cartilage damage, and paralabral cysts is associated with labral tears (114).

In isolated pincer-type FAI the labrum typically shows thinning, intrasubstance fissuring, and fraying, while in cam-type FAI there is typically a chondrolabral avulsion (119).

Cartilage

Mechanism of Athletic Labral and Cartilage Injury

Acetabular and femoral cartilage damage may be caused by bone deformities (120). Shear forces to the cartilage caused by the eccentric portion of the femoral head in patients with cam deformities lead to cartilage delamination (13). In patients with cam deformities...
State of the Art: Hip Imaging in Athletes

Agten et al

Normal Variants

A supraacetabular fossa in the acetabular roof (12 o’clock) is an anatomic variant present in about 10% of individuals (125). The fossa can be a defect in the subchondral bone and cartilage, filled with joint fluid (type 1), or only in the subchondral bone, filled with cartilage (type 2) (125). A supraacetabular fossa is distinct from the acetabular fossa and probably represents an age-related developmental morphologic variation, with type 1 supraacetabular fossa undergoing remodeling over time, appearing as a type 2 supraacetabular fossa (Fig 11) (125). A supraacetabular fossa should not be mistaken as an osteochondral defect.

Another variant is the superior acetabular roof notch, which is a sharply delineated, more longitudinally, fluid- or fat-filled pit in the medial aspect of the acetabular roof, distinct from the supraacetabular fossa (Fig 12) (125). On radiographs, a superior acetabular roof notch is present in 17% of men and 22% of women (126). The stellate lesion, also called stellate crease, is another anatomic variant of the acetabulum seen at arthroscopy. A stellate lesion is an area of the acetabular roof without cartilage coverage, located more medially than a supraacetabular fossa (128).

Imaging Findings

Cartilage defects can be described as focal defects or thinning (44). On MR arthrography images, cartilage defects may fill up with injected contrast material. Increased signal intensity of the

Figure 9: Image in a 27-year-old man with massive right-sided groin pain. Coronal intermediate-weighted fat saturated direct MR arthrography image (2800/33) of the right hip with hip traction. Labral tear (white arrow) with adjacent cartilage delamination (black arrow) in a patient with cam-type deformity (arrowhead)—the classic triad of imaging findings in cam-type impingement.

Figure 10: MR image in a 28-year-old professional male ice hockey player with hip pain for 2 weeks after a sudden pain event on ice. Oblique transverse water-excitation true FISP MR image (11.02/4.3) of the right hip after direct MR arthrography without traction shows a parafoveal cartilage delamination on the femoral head (arrow).

Figure 11: MR images in an 18-year-old woman with hip pain. (a) Sagittal intermediate-weighted fat-saturated image (2600/32) of the right hip after direct arthrography show supraacetabular fossa type 1 (arrow). (b) Sagittal water-excitation true FISP MR image (25.16/8.56) obtained at follow-up 8 months later shows a supraacetabular fossa type 2 at the same location, indicating the physiologic progression of this normal variant, as the fossa is getting smaller and is now filled with cartilage (arrow). This should not be mistaken for an osteochondral lesion.
cam deformities may lead to leverage of the head out of the socket and thus to microinstability (52). On MR images, a thickened iliofemoral ligament (anterior joint capsule) with irregularities on the undersurface of the anterior capsule has been described as a sign correlating with clinical findings of laxity (130). However, a contradicting study reports an anterior capsular thinning in hip laxity (2.5 mm with laxity versus 3.3 mm without laxity) (132). Patients with microinstability may be suspected to have an increased capsule volume, which might be detected during arthrography. Traction MR arthrography sometimes shows larger widening of a hip joint, potentially indicating hip laxity. Patients with a successful joint distraction at traction MR arthrography with a relatively low weight of 8–10 kg showed smaller center edge angles compared with those with unsuccessful joint distraction (52). Other findings associated with positive joint distraction were higher alpha angles, higher neck-shaft angles, smaller acetabular depths, and hypertrophy of the ligamentum teres (52).

Figure 12: Images in an 18-year-old man with previous arthroscopy of the right hip due to FAI. (a) Coronal CT reconstruction and (b) coronal T1-weighted MR image (608/13) of the right hip both show a supracetabular fossa (type 2) (white arrow) and superior acetabular roof notch (black arrow) in the same patient. These findings were bilateral (left side not shown). The superior acetabular roof notch is filled with fat tissue.

Instability of the Hip Joint
Concept and Controversies
Because of the osseous congruency and the depth of the acetabulum, the hip is an intrinsically stable joint. The surrounding soft tissues such as the labrum, joint capsule, ligaments, and muscles are important static and dynamic hip stabilizers in sports (130). The concept of microinstability is based on symptomatic hip laxity, but without complete luxation or marked subluxation (130). Origin of microinstability is believed to be either traumatic (single or repetitive trauma) or atraumatic (generalized laxity or developmental dysplasia of the hip). The clinical diagnosis is difficult, as there are no clear criteria for hip microinstability (52). Patients may feel “instability” in the hip joint, snapping, and/or pain during sports (130). If conservative treatment fails, hip arthroscopy may be performed by some surgeons to reduce capsule volume (131).

Role of Imaging
In patients with suspected microinstability, radiographs can reveal underlying developmental dysplasia of the hip. Another reason may be that the aspheric head which is present with...
Ligamentum Teres

The ligamentum teres is an external rotation stabilizer and has gained more attention in recent years (133). The ligamentum teres has a broad origin in the acetabular fossa with two bands blending in with the transverse ligament and inserts in the fovea capitis femoris (134). Ligamentum teres injuries are a possible source of hip pain and may respond to arthroscopic treatment (135). Arthroscopically ligamentum teres lesions are categorized as complete rupture, partial rupture, or degeneration (136). The ligament is completely torn after frank hip dislocation, but tears may also occur with sudden external rotation (137). On MR images, the normal ligamentum teres has smooth borders and a homogeneous, hypointense structure at all sequences (137). The ligament is best visualized in the coronal and transverse plane (also oblique transverse). Ligament degeneration is similar to tendons, ranging from mucoid degeneration to complete tears (138). Complete tears are most commonly located near the fovea and show a discontinuity of the ligament with lax contours (Fig 14) (130,137). MR imaging (67% sensitivity, 99% specificity) and MR arthrography (67% sensitivity, 100% specificity) show similar good results for the detection of complete tears, with hip arthroscopy as reference standard (139). However, MR arthrography offers a better diagnostic performance compared with MR imaging regarding partial tears (139).

Abductor Tendons

The greater trochanteric pain syndrome refers to peritrochanteric pain with abnormalities of the hip abductor tendons and the greater trochanteric bursa. It is a common cause for lateral hip pain in active middle-aged women (141). Apart from a trochanteric bursitis, the abductor tendons (gluteus minimus and gluteus medius tendon) can be affected. Peritendinitis is the earliest manifestation of tendon damage and manifests as fluid-like signal intensity superficial to the tendon (142).

Athletes, especially runners, dancers, soccer players, and weight lifters, may encounter an external snapping hip syndrome, with popping movements of the iliotibial band or the gluteus maximus muscle over the greater trochanter during full extension of the hip (143). Such an external snapping hip is primarily a clinical diagnosis (144). US can show in real time the sudden displacement of the iliotibial band or gluteus maximus muscle over the greater trochanter and fluid in the trochanteric bursa (145). Other US findings are a hypoechoic and thickened iliotibial band at the level of the greater trochanter (145). Reactive fluid within the trochanteric bursa from repetitive mechanical snapping can easily be identified on MR images between the gluteus medius tendon and the gluteus maximus muscle/iliotibial band, sometimes extending posterior around the greater trochanter (144). On MR images the iliotibial band may be thickened with adjacent soft-tissue edema (144).

Myotendinous Injuries around the Hip Joint

Tendon injuries are often overuse injuries or a result of a single traumatic event. At MR imaging, tendinopathic tendons are thickened and show increased signal intensity on T1-weighted images. In partial tears, fluid-filled defects within the tendon substance can be detected on fluid-sensitive MR images such as STIR, T2-weighted, and intermediate-weighted fat-saturated images. Full-thickness tears show a complete discontinuity of the tendon with various degrees of tendon retraction (140).

Morel-Lavallée Lesion

A different entity from trochanteric bursitis is the Morel-Lavallée lesion. It is a posttraumatic, typically encapsulated fluid collection between the superficial and deep fascia layers of the lateral thigh, classically in the trochanteric region adjacent to the fascia lata (Fig 15) (146). As a result of severe shearing forces or compression (closed degloving injury), vessels perforating the different fascia layers are damaged and leak into the virtual space between the superficial and deep fascia. Because the Morel-Lavallée lesion is encapsulated, it does not resolve spontaneously and usually requires surgical treatment or drainage (147). If chronic, it may mimic a soft-tissue mass (eg, sarcoma) (148). An MR classification system for Morel-Lavallée lesions has been proposed (types I–V), depending on morphology, capsule, T1 and T2 signal intensity, and contrast enhancement (146).

iliopsoas Tendon

The internal (extraarticular) snapping hip syndrome is caused by sudden movements of the iliopsoas tendon over the iliopectineal eminence, the femoral head, a paralabral cyst, over the medial aspect of the iliacus muscle itself, or over a bifid iliopsoas tendon (144,149). Snapping of the iliopsoas tendon can be accompanied by an iliopsoas tendinopathy and iliopsoas bursitis, both detectable at MR imaging and US (150,151). Iliopsoas tendinopathy is an underrecognized source...
STATE OF THE ART: Hip Imaging in Athletes
Agten et al

Tendon can reach far distally into the thigh (Fig 4) (157). Hamstrings
The biceps femoris muscle, the semitendinosus muscle, and the semimembranosus muscle form the hamstring muscle complex, originating from the ischial tuberosity. Hamstring injuries occur at the weakest link in the bone-tendon-muscle unit: ischial tuberosity bone avulsions in children, myotendinous junction injuries in adolescent and young athletes, and injuries of the tendon itself in older adults (159). In professional soccer players, hamstring muscle strains are the most common single injury subtype and are clinically severe (28 days lost from playing sports) in 15% of patients (160). The return to play time in hamstring injuries correlates with a simple MR imaging classification system (grade 0 = negative at MR imaging, grade 1 = edema, grade 2 = partial tear, grade 3 = muscle or tendon rupture) (161). Because return

Figure 15: MR image in a 30-year-old man after a contusion to the left thigh 3 weeks previously. Coronal STIR image (4420/39) of the left thigh shows a massive, encapsulated hematoma between the deep and superficial fascial layers (Morel-Lavallée lesion, arrowheads), reaching from the greater trochanter down to the femoral condyles. In addition, there is a small intramuscular hematoma in the vastus lateralis and intermedius muscles (arrow).

Figure 16: MR images in a 16-year-old male patient with previous abduction trauma of the left hip and subsequent clinical hip impingement. (a) Sagittal and (b) coronal intermediate-weighted fat-saturated images (2750/31) after direct arthrography show feathery edema along the iliacus tendon (muscle strain injury to the myotendinous junction; arrow).

Figure 15

Figure 16

Hematoma are often present (Fig 16). In chronic cases, an iliopsoas bursitis is a common finding (152).

Rectus Femoris Tendon
The rectus femoris tendon origin has two components, a direct head originating from the AIIS and a reflected (indirect) head originating from the lateral aspect of the acetabulum, both fusing to one tendon shortly below the AIIS (156). Rectus femoris tendon tears manifest as acute injuries, typically in soccer players, American football players, and sprinters (157). However, myotendinous strains of the reflected tendon may have an insidious presentation (157). Proximal tendon injuries, partial tears, and complete tears can be depicted with transverse MR imaging sequences, but the extent and the retraction is better visualized in the sagittal or oblique sagittal plane. Injuries of the reflected (indirect) tendon part are more common than injuries of the direct head (158). The myotendinous junction of the reflected (indirect) tendon part is quite long, and myotendinous injuries of the reflected tendon can reach far distally into the thigh (Fig 4) (157).

Hamstrings
The biceps femoris muscle, the semitendinosus muscle, and the semimembranous muscle form the hamstring muscle complex, originating from the ischial tuberosity. The biceps femoris tendon and the semitendinosus tendon originate as a conjoint tendon posteromedial to the semimembranosus tendon. Hamstring injuries occur at the weakest link in the bone-tendon-muscle unit: ischial tuberosity bone avulsions in children, myotendinous junction injuries in adolescent and young athletes, and injuries of the tendon itself in older adults (159). In professional soccer players, hamstring muscle strains are the most common single injury subtype and are clinically severe (>28 days lost from playing sports) in 15% of patients (160). The return to play time in hamstring injuries correlates with a simple MR imaging classification system (grade 0 = negative at MR imaging, grade 1 = edema, grade 2 = partial tear, grade 3 = muscle or tendon rupture) (161). Because return
Anatomy

The pubic symphysis is formed by the two pubic bones with hyaline cartilage on opposing articulating surfaces, separated by a fibrocartilage disc. The physiologic joint space of the pubic symphysis is also termed the primary cleft. The pubic symphysis is supported by four ligaments (anterior, posterior, superior, and inferior [arcuate] ligament). Some of these ligaments are contiguous with the disc, the surrounding muscle attachments, and muscle origins, supporting overall stability (168). This leads to a prominent aponeurotic plate, connecting the distal rectus abdominis attachment, the pubic symphysis, and the adductor longus origin. Close anatomic proximity of these structures with the medial border of the superficial inguinal ring may explain inguinal hernia–like symptoms in patients with athletic pubalgia, even though true hernias are absent in these patients (169).

Tendon and Bone Injury

Tears of the aponeurosis connecting the rectus abdominis and the adductor longus muscle can be detected on fluid-sensitive MR images as fluidlike areas separating the aponeurosis (170). Sagittal and coronal oblique planes (perpendicular to the aponeurosis) with a small field of view are recommended (171). In case of an injury, separation of the aponeurotic plate from the pubic bone inferolateral forms a secondary...
cleft, which contains fluid on fluid-sensitive MR images (Fig 18) (170). However, this so-called secondary cleft sign only has moderate sensitivity (57%) and specificity (60%) for diagnosing injury of the aponeurosis (169). Recently, a superior cleft sign has been described as a sign for tearing of the rectus abdominis/adductor longus junction more cranially (172). The superior cleft sign is positive if fluid on MR images or injected contrast material at symposiography linearly leaks parallel to the inferior margin of the superior pubic ramus to the side of symptoms (172).

A more obvious finding is frank tendon avulsion from the pubic bone (173). Associated bone marrow edema anteroinferiorly in the pubic bones is common and was reported in over 50% of patients with athletic pubalgia (169). Other imaging signs are edema or atrophy of the rectus abdominis muscle attachment. Thickening or increased signal intensity of the adductor tendon origins, reflecting adductor tendinopathy, is often associated with aponeurotic tears (173).

While acute injury of the aponeurosis is commonly seen in athletes, the pubic symphysis may also show chronic changes: Osteitis pubis manifests as osseous irregularities of the pubic symphysis with erosions, productive changes such as sclerosis and osteophytes. Osteitis pubis may be present without damage to the aponeurotic plate (169).

Involvement of rectus abdominis attachment, the adductor origin, pubic symphysis articulation (osteitis pubis), or any combinations should be stated in MR reports, as treatment may be different (169).

Summary

We described sports-related anatomy, biomechanics, and disease of the hip joint with special focus on MR imaging. The high prevalence of “pathologic” findings in asymptomatic athletes mandates the need for close communication between radiologists and the referring clinical colleagues. The often nonspecific clinical presentation of athletes with hip and/or groin pain requires a thorough evaluation of the hip joint itself on MR images, but the surrounding soft tissues are equally important.

Disclosures of Conflicts of Interest: C.A.A. disclosed no relevant relationships. R.S. disclosed no relevant relationships. F.M.B. disclosed no relevant relationships. C.W.A.P. disclosed no relevant relationships.

References

